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ABSTRACT: The root cause of the antibiotic resistance crisis
is the ability of bacteria to evolve resistance to a multitude of
antibiotics and other environmental toxins. The regulation of
adaptation is difficult to pinpoint due to extensive phenotypic
heterogeneity arising during evolution. Here, we investigate
the mechanisms underlying general bacterial adaptation by
evolving wild-type Escherichia coli populations to dissimilar
chemical toxins. We demonstrate the presence of extensive
inter- and intrapopulation phenotypic heterogeneity across
adapted populations in multiple traits, including minimum
inhibitory concentration, growth rate, and lag time. To search
for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response
networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed,
clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted
populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select
genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the
connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered
regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We
identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study
provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of
the pervasive phenotypic heterogeneity underlying adaptation.
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Bacteria are able to rapidly adapt to myriad environmental
pressures, a factor which has led to the widespread

emergence of drug-resistant and multi-drug-resistant patho-
gens.1 Initially susceptible bacterial populations are able to
survive and propagate through a nongenetic response known as
adaptive resistance.2 Adaptive resistance has been observed for
many conditions across a variety of bacterial species,3−7

suggesting that adaptive resistance is controlled by an inherent,
conserved regulatory response. While a conserved gene
expression profile has been observed in eukaryotes in response
to multiple stress conditions,8,9 such behavior remains to be
elucidated for adaptive resistance in bacteria.
The extensive phenotypic heterogeneity that underlies

evolution is a major obstacle to identifying a signature for
bacterial adaptive resistance. Intrapopulation heterogeneity
allows adapting populations to sample multiple states, without
genetic alteration, in order to maximize the probability of
survival. For instance, several studies indicate that stress-
response genes tend toward noisy gene expression character-
istics.9−11 Persistence is an example of a “bet-hedging”
strategy12 that leads to increased odds of continued existence.
Remarkable diversity in gene expression,13,14 lag time,15 and

sugar consumption16 has also been observed to emerge upon
exposure to selection pressure within isogenic populations.
Additionally, conjugation17 and growth in the presence of
antibiotic18 have been found to be controlled by bistable
feedback regulation, thus enabling phenotypic switching when
expression varies sufficiently to cross a threshold. The ubiquity
of such diversity-promoting mechanisms supports heterogene-
ity as a necessary component of adaptation.
While adaptive resistance is generally considered to be a

nongenetic response, it has also been recognized that beneficial
mutations arise during adaptation and contribute to heritable
resistance. While the fixation of spontaneous or stress-induced
mutations over many generations obligates a genetic
component to interpopulation heterogeneity,19−21 divergence
between populations can also be imposed by nongenetic
changes. These include the amplification of intrapopulation
stochasticity in gene expression13 or the influence of epigenetic
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modifications.22 The intersection of genetic and nongenetic
explanations for resistance provides added complexity when
attempting to identify signals of adaptation, as gene expression
changes can both cause23,24 and be caused by25,26 mutations.
Furthermore, even genetically diverse populations during long-
term adaptation experiments establish the occurrence of gene
expression patterns associated with response to environmental
pressure.25 Given that genetic diversity and gene expression
heterogeneity can both occur simultaneously during evolution
studies, distinguishing general regulators of adaptive resistance
is a challenging task.
In this study, we characterize general mechanisms of adaptive

resistance by searching for a conserved gene expression
response in heterogeneously adapted Escherichia coli popula-
tions. We provide evidence for intra- and interpopulation
heterogeneity at multiple levels during the de novo evolution of
resistance. We observe rapid interpopulation divergence in
minimum inhibitory concentration (MIC), growth rate, and lag
time, and that adapted populations have increased intra-
population variability when compared to wild-type. Probing
population-level gene expression patterns in three stress-
response networks (the mar regulon, the general stress
response, and the SOS response) revealed additional
interpopulation variability. We hypothesize that, despite
substantial heterogeneity, population-level stress-response

gene expression may provide a means by which to distinguish
adapted and unadapted bacterial populations and pinpoint key
genes involved in adaptive resistance. By measuring expression
from a representative set of stress-response genes, we show that
interpopulation gene expression variability in adapted pop-
ulations is dissimilar to that in unadapted populations.
Evaluating adaptive performance of strains containing clustered
regularly interspaced short palindromic repeats interference
(CRISPRi)27 constructs that perturb stress-response gene
expression, as well as performance of single-gene knockout
mutant strains,28 allowed for observation of distinctive
relationships between the degree of a gene’s expression
variability and that gene’s involvement in adaptation. These
results suggest that interpopulation gene expression variability
is a metric by which to identify adapting bacterial strains and
realize genes participating in adaptive resistance.

■ RESULTS AND DISCUSSION

Bacterial Adaptation to Antibiotics Promotes Inter-
and Intrapopulation Heterogeneity in MIC, Growth
Rate, and Lag Time. To analyze the innate adaptation
abilities of bacteria, wild-type E. coli strain MG1655 was evolved
in the laboratory against two broad-spectrum antibiotics with
different modes of action: ampicillin and tetracycline. Dissimilar
antibiotics were selected in order to investigate a general

Figure 1. Adaptation protocol and inter- and intrapopulation heterogeneity in MIC. (A) E. coli was subjected to increasing levels of stress in the form
of a chemical toxin. On day 1, the initial MIC for the toxin of interest was determined. The culture growing at the highest concentration of toxin was
propagated by serial dilution for the remainder of the adaptation period. mRNA levels were quantified in samples from the final day of adaptation
and day 0 wild-type strains. To measure intrapopulation variability, adapted and unadapted populations were plated and colonies selected for
sequencing, MIC, and growth analysis. (B,C) E. coliMG1655 was adapted to ampicillin (B) and tetracycline (C). The x-axis starts from day 1, and y-
axis shows the MIC of three independently adapted cultures per toxin on each day, where MIC is defined as 2x the toxin concentration at which a
culture reaches OD600 ≥ 0.5 after 24 h of growth. (D−G) MIC on LB agar of individual colonies from wild-type and adapted populations (n = 36 for
all). MIC of ampicillin-adapted populations is shown in (D). MIC of tetracycline-adapted populations is shown in (E). Leftmost panels show wild-
type colonies, and additional panels show colonies from each adapted population. (F,G) Distribution in MIC from respective panels to the left.
Arrows indicate minimum and maximum values. The horizontal line is the median value.
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adaptive response and not a response to a specific selection
pressure. While ampicillin is a bactericidal β-lactam antibiotic
that impairs cell wall formation,29 tetracycline inhibits protein
synthesis by blocking ribosome−tRNA interactions.30 Three
biological replicates were adapted to each toxin for a medium-
term time period of 11−14 days, intended to mimic a standard
antibiotic course31 (Figure 1A; see Methods). A medium-term
adaptation period also mitigates certain complications
associated with short- or long-term adaptation. For instance,
long-term adaptation experiments spanning months have
successfully isolated resistant mutants,7,32,33 but these mutant
populations are highly enriched. On the other hand, short-term
exposure (minutes to hours) leads to a larger number of gene
expression changes, many of which appear to be nonspecific to
an adaptive response.34 Additionally, short-term exposure
periods may point to mechanisms of cell death35,36 rather
than avenues of successful adaptive resistance.
Samples were collected at the beginning and the end of the

adaptation period. Cultures isolated on the final day of the
adaptation period are henceforth referred to as ampicillin- or
tetracycline-adapted populations 1, 2, and 3. We observed that
biological replicates exposed to the same antibiotic treatment
demonstrated rapid divergence in adaptation rates, as

exemplified by the MIC of the adapting populations (Figure
1B,C). Initially, the ampicillin-adapted populations had MICs
of 8−32 μg/mL of ampicillin (day 1). After up to 14 days of
propagation, all ampicillin-adapted populations demonstrated
MICs increasing to 200 μg/mL of ampicillin. Similarly, cultures
adapted to tetracycline possessed initial MICs of 0.5−1 μg/mL
of tetracycline and reached a MIC of 4−8 μg/mL of
tetracycline at the end of the adaptation period.
To characterize interpopulation and intrapopulation hetero-

geneity, we picked 36 colonies from each adapted population
for MIC (Figure 1D−G) and growth analysis (Figure 2).
Average MICs of ampicillin-adapted populations 1, 2, and 3
were 186.11 ± 35.07, 43.75 ± 13.19, and 73.61 ± 25.00 μg/mL
of ampicillin, which were higher and more diverse compared to
a MIC of 12.5 ± 0.00 μg/mL of ampicillin for wild-type
populations (Figure 1D). Similarly, average MICs of tetracy-
cline-adapted populations 1, 2, and 3 were 22.22 ± 7.91, 16.28
± 5.54, and 3.94 ± 0.33 μg/mL of tetracycline compared to
2.00 ± 0.00 μg/mL of tetracycline for wild-type populations
(Figure 1E). One-way ANOVA with Bonferroni test was used
to establish that the MICs for each set of adapting populations
were significantly different from one another (significance level
set at P < 0.05). Furthermore, we found that the wild-type

Figure 2. Interpopulation and intrapopulation heterogeneity in growth characteristics of adapted populations. (A,B) Colonies from each ampicillin-
adapted population were regrown in media with no toxin, 50 μg/mL, or 100 μg/mL of ampicillin. (C,D) Colonies from tetracycline-adapted
populations were regrown in media with no toxin, 1 μg/mL, or 2 μg/mL of tetracycline. Growth rate, μ (A,C), and lag time, τ (B,D), are presented
for adapted and wild-type populations in the same concentrations of toxin. Growth parameters significantly different (P < 0.05) than those of wild-
type in the same condition are indicated with ∗. Box plots show the interquartile range (IQR) for n = 36 colonies from each population. The median
is indicated with a horizontal line. Whiskers depict the minimum and maximum value. (E) Average growth rate and lag time from (A−D), with
standard deviation.
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population displayed a very consistent degree of resistance, with
all colonies exhibiting the same MIC of 12.5 μg/mL of
ampicillin (Figure 1D) and 2 μg/mL of tetracycline (Figure
1E). In contrast, a wide range of MIC was observed within all of
the adapted populations. Colonies from ampicillin populations
1, 2, and 3 had MICs ranging between 100 and 200 μg/mL,
12.5−50 μg/mL, and 50−100 μg/mL of ampicillin, respectively
(Figure 1F). Colonies from tetracycline populations 1, 2, and 3
exhibited MICs ranging between 16 and 32 μg/mL, 4−16 μg/
mL, and 2−4 μg/mL of tetracycline, respectively (Figure 1G).
This difference in the spread of the data shows that the MIC for
the adapted populations is more heterogeneous both within as
well as across populations than the wild-type population.
The divergence in MIC led us to investigate the growth rate

and lag time of adapted populations as another indicator of
heterogeneity. We grew the selected colonies at two sub-MIC
levels of antibiotic for 24 h. Significant interpopulation and
intrapopulation differences in growth rate and lag time were
observed, further highlighting the phenotypic divergence in
adapted populations (Figure 2A−D). One-way ANOVA with
Bonferroni tests (significance at P < 0.05) was used to compare
growth across wild-type and adapted populations. Without
selection pressure, all of the ampicillin-adapted populations
demonstrated an average specific growth rate and/or lag time
that was significantly different than that of the wild-type (Figure
2E). Additionally, each ampicillin-adapted population exhibited
an average growth rate and/or lag time in the presence and the
absence of selection pressure that was significantly different
from that of the other ampicillin-adapted populations in the
same condition. As in MIC, we observed different ranges of
growth rates and lag time in the presence of ampicillin for the
adapted populations, especially in ampicillin population 3,
which demonstrated the largest interquartile range both in
growth rate (0−0.23 h−1) and lag time (8.5−24 h) in 100 μg/
mL of ampicillin. Interestingly, a unique strategy is evident in
ampicillin-adapted population 2, which when taken as a whole
was able to grow at 100 μg/mL of ampicillin (Figure 1B), while
few (8 out of 36) of the individual colonies were able to survive
even in 50 μg/mL of ampicillin (Figure 2A,B). This indicates
that ampicillin population 2 could be using a mutualism
strategy, one that requires the contribution of multiple players
for survival. Comparable cooperative single-species populations
have been observed to emerge in evolution experiments37 and
have also been created synthetically.38

Similar to ampicillin-adapted populations, tetracycline-
adapted populations also exhibited significantly different
average growth rate and/or lag time in every condition in the
presence of tetracycline (Figure 2C,D). Although the average
growth rates of tetracycline-adapted populations 1 and 2 were
not significantly different in media without selection pressure,
population 2 demonstrated intrapopulation heterogeneity
higher than that of tetracycline populations 1 and 3 in both
growth rate and lag time, as shown by the spread of the
interquartile range (Figure 2C,D).
These results demonstrate significant divergence in MIC and

in growth parameters within and across populations in clinically
relevant time spans, a key issue to consider when searching for
antibiotic targets. To further study heterogeneity in the adapted
bacterial populations, we examined stress-response gene
expression, hypothesizing that patterns in gene expression
would provide insight into general mechanisms of adaptive
evolution.

Interpopulation Variability in Gene Expression across
Antibiotic-Adapted Strains. We measured the dominant
mRNA levels for a representative set of 14 stress-response
genes in each of the adapted and unadapted populations. Genes
selected are associated with at least one of three potential
adaptive resistance pathways: the multiple antibiotic resistance
(mar) regulon, the general stress response, or the SOS
response. We measured expression of five genes associated
with the mar regulon: marA, rob, soxS, acrA, and tolC. MarA is
the activator of the mar phenotype, which confers increased
tolerance to drugs and solvents by increasing efflux activity,
decreasing porin expression, and regulating metabolism, among
other activities.39 One multidrug efflux pump positively
controlled by MarA is AcrAB-TolC, known for playing a role
in conferring resistance to multiple toxins.40 MarA binds to
sequences of DNA called “mar-boxes”, located upstream of the
promoters of regulated genes. Two other regulatory proteins,
Rob and SoxS, also bind to the mar-box, generating a large
network of genes that can be induced in response to different
stress conditions.41

To determine if the general stress response was active, we
measured expression of rpoS, mutS, cyoA, and hfq genes. The
general stress response plays a role in activating mutagenic
DNA repair42 and is regulated by the sigma factor RpoS. More
than 30 proteins have been shown to act upstream to trigger
RpoS activity.43 We evaluated gene expression of two of these
upstream proteins, CyoA, a subunit II of the cytochrome bo
terminal oxidase complex,44 and Hfq, a small RNA chaper-
one.45 Recently, it was demonstrated that the MutS enzyme in
the methyl-directed mismatch repair system is down-regulated
via an RpoS-controlled sRNA, sdsR, increasing mutation rates in
stressed bacteria.24

Additionally, we assessed expression of five genes involved in
the SOS response: lexA, recA, dinB, polB, and dam. The SOS
response is induced to repair double-stranded DNA breaks.46

The enzyme LexA binds to SOS-box promoter regions,
effectively repressing SOS response genes at a transcriptional
level.47 RecA activates the SOS response by inducing autolytic
cleavage of DNA-bound LexA47 and also participates in
repairing DNA strand breaks by stabilizing single-stranded
DNA and catalyzing strand exchange.48 Some downstream
constituents of the SOS response include polB49 and dinB,50

which code for the DNA polymerases PolII and PolIV,
respectively. PolII functions as a DNA polymerase and has a
proof-reading exonuclease; thus, mutants defective in exonu-
clease function are found to have increased mutation rates.51

PolIV is an error-prone DNA polymerase that is also regulated
by RpoS.50,52 Loss of the DNA−adenine methyltransferase
(Dam) results in activation of SOS response genes,53

potentially due to an increase in DNA damage from random
mismatch repair.
Normalized gene expression in each adapted population was

calculated by comparison of fold change normalized to
reference gene expression and average fold change across
three wild-type populations (see eqs 4 and 5 in Methods).
Consistent with the heterogeneity observed in MIC and
growth, we again noted considerable differences between the
dominant gene expression patterns in each antibiotic-adapted
population (Figure 3A,B). Interestingly, while expression of
some genes was found to be highly variable across populations,
other genes demonstrated consistent up- or down-regulation
across all adapted populations or across antibiotics. Both
ampicillin- and tetracycline-adapted populations demonstrated
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high interpopulation variability in expression of marA, soxS, hfq,
cyoA, and lexA genes. marA transcript levels in tetracycline-
adapted cultures were found to be more than 30-fold up-
regulated in one population and 6-fold down-regulated in
another (Figure 3B). In contrast, rob, tolC, dinB, and recA were
tightly expressed across ampicillin-adapted populations, and
acrA, rpoS, polB, dinB, and recA were tightly expressed across
tetracycline-adapted populations. Within these transcripts, we
found rpoS, recA (P = 0.01 for both), and dam (P = 0.10) to be
significantly down-regulated in ampicillin-adapted populations
(Figure 3A) and rpoS and polB (P = 0.02 for both) to be down-
regulated in tetracycline-adapted populations (Figure 3B).
Genes with High and Low Expression Variability

Demonstrate Interpopulation Sequence Heterogeneity.
It is well-established that gene expression changes can result
from either genetic25,54 or nongenetic4,14,55 mechanisms. To
ascertain whether the interpopulation variability observed in
gene expression can be attributed to mutations, we examined
genes expressed with higher and lower degrees of interpopu-
lation gene expression variability. We sequenced soxS (high
variability) and tolC (low variability) genes in three colonies

from each of the three ampicillin-adapted populations (Figure
3C,D) and cyoA (high variability) and recA (low variability)
genes in three colonies from each of the three tetracycline-
adapted populations (Figure 3E,F). We found no mutations in
promoter or upstream regions from any colony (all 36
colonies) in any of the four genes sequenced, which indicates
that interpopulation gene expression variability here does not
stem from mutations impacting promoter binding affinity.
Interpopulation gene expression variability could result from
other factors, including epigenetic changes, stochasticity of
transcription factor binding, or mutations in trans regulatory
regions.
We examined the open reading frame in order to evaluate

whether mutations were present that could influence protein
function and enable selection for differential regulation.
Though soxS was expressed with high interpopulation
variability, there were no mutations in soxS in any sequenced
population (Figure 3C). Ampicillin-adapted populations 1 and
2 did not have any mutations in tolC, though one of three
colonies in population 3 was found to contain two adjacent
single-nucleotide polymorphisms (SNPs), a synonymous I356I
and a nonsynonymous N357H (Figure 3D). As the population-
level expression of tolC in ampicillin population 3 was similar to
that in populations 1 and 2 (Figure 3A), these SNPs did not
have a measurable impact on tolC gene expression. In
tetracycline populations, a number of SNPs were located in
cyoA, although none of the mutations were shared between
multiple colonies nor was the same codon mutated in any two
colonies (Figure 3E). In cyoA, we did not observe a consistent
trend between the number of mutations found in a population
and the impact on population-level gene expression. For
instance, tetracycline population 2 had only one mutation in
one of three colonies but, overall, had the highest increase in
gene expression with respect to wild-type (Figure 3B). For recA,
only one of the nine colonies contained mutations: a
synonymous K311K, a synonymous P336P, and a non-
synonymous E351stop in one colony from tetracycline
population 2 (Figure 3F). As discussed for tolC, the recA
gene expression level in tetracycline population 2 was similar to
that in tetracycline populations 1 and 3, so again, we see that
the mutations observed in one colony did not impact
population-level gene expression. Thus, in general, we do not
observe a correlation between expression variability and the
number of mutations in a given gene, as out of the higher
variability genes, soxS had no mutations while cyoA had many
mutations. We also find in recA and tolC that mutations do not
prevent gene expression from being tightly controlled. These
results taken together emphasize that gene expression
variability is not readily explained by gene sequence and
underscores the challenge of identifying general attributes of
bacterial adaptation.

Interpopulation Variability in Gene Expression in the
Presence of Alternate Toxins. To further probe if
interpopulation variability in mRNA levels is related to adaptive
resistance, we expanded the study to observe E. coli MG1655
populations exposed to alternate chemical toxins: biofuel
compounds n-hexane and n-butanol. While it has been shown
previously that E. coli K12 derivatives are intrinsically resistant
to n-hexane via AcrAB-TolC efflux,56 n-butanol is known to be
toxic to E. coli, disturbing cellular respiration, metabolism, and
transport, as well as activating the mar regulon, the oxidative
stress response, the membrane stress response, and the heat
shock response.57 As expected, E. coli growth was not hindered

Figure 3. Variable expression of stress-response genes in ampicillin-
and tetracycline-adapted populations. (A,B) Normalized expression of
stress-response genes for ampicillin- (A) and tetracycline-adapted (B)
populations (calculated as described in Methods). The horizontal line
at 1 marks expression equal to wild-type. Significant differential
expression is denoted with ∗ for P < 0.05 and # for P < 0.10. (C−F)
Genes expressed with high and low interpopulation variability were
sequenced. (C) soxS and (D) tolC were sequenced in three colonies
from each ampicillin-adapted population (indicated by AMP1, 2, 3).
(E) cyoA and (F) recA were sequenced in three colonies from each
tetracycline-adapted population (indicated by TET1, 2, 3). Regions
sequenced for each gene are indicated with respect to +1 of the most
upstream promoter. Sequence is shown only for codons with
mutations. Single-nucleotide polymorphisms are indicated in either
red (nonsynonymous) or blue (synonymous). Dots indicate no
change with respect to wild-type.
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in 5 or 10% v/v n-hexane (Figure S1), while E. coli did not gain
resistance to more than 1% v/v n-butanol (Figure S2).
Analogous to ampicillin- and tetracycline-adapted populations,
independently adapted populations in n-butanol demonstrated
heterogeneous initial and transient MICs. However, the MIC of
the n-butanol-adapted populations was found to be less
divergent than that of the antibiotic-adapted populations, likely
due to a high degree of selection as a result of the particularly
disruptive nature of n-butanol stress.
We measured gene expression in populations adapted to n-

butanol or grown in 10% v/v n-hexane (Figure 4A,B). In n-

butanol-adapted cultures, hfq (P = 0.02), lexA (P = 0.04), and
rpoS (P = 0.06) were differentially under-expressed, while recA
(P = 0.01) was differentially overexpressed. Again, few genes
were tightly expressed, while others were variable across the
individually adapted populations. In n-butanol cultures, tolC,
rpoS, hfq, and recA gene expression was less variable across the
adapted populations, while the most variable genes were cyoA
and soxS (Figure 4B). In contrast, none of the genes was
significantly under-expressed in the n-hexane populations,

though rob (P = 0.08) and soxS (P = 0.09) were overexpressed
(Figure 4B). cyoA expression had the lowest variability across
the n-hexane populations, a striking contrast to the high
expression variability in cyoA across populations adapted to
ampicillin, tetracycline, or n-butanol. Other genes with lower
variability in n-hexane included rob, soxS, and recA, while lexA,
marA, and dinB had the largest interpopulation variability.

Differential Gene Expression Variability Is an Indica-
tor of Adaptation. We postulated that the degree of
interpopulation transcript variability in adapted (ampicillin-,
tetracycline-, and n-butanol-adapted populations) when com-
pared to unadapted populations (wild-type and n-hexane
populations) might signify a response associated with adaptive
resistance. To compare expression variability across adapted
populations, we employed hierarchical clustering as well as
principal component analysis (PCA). The interpopulation
range of gene expression (range of −ΔCq,avg) was used as the
variability metric (eq 4). Notably, the unadapted and adapted
populations were divided into separate clusters using
hierarchical clustering (Figure 4C). Among the adapted
populations, the tetracycline- and ampicillin-adapted popula-
tions were closest together. Separation of unadapted and
adapted populations according to gene expression variability
was also observed using PCA (Figure S3).
Hierarchical clustering highlights patterns in gene expression

variability that separate adapted and unadapted populations.
Importantly, we find that in adapting populations while few
genes exhibit increased interpopulation gene expression
variability, few other genes demonstrate decreased interpopu-
lation gene expression variability with respect to wild-type
(Figure S4) or unadapted hexane population (Figure 4C). As a
result, the overall expression variability pattern across the set of
genes is fundamentally different for adapted versus unadapted
populations. Interestingly, several genes were significantly
differentially variable in adapted conditions versus unadapted
conditions, perhaps signifying a stress-specific adaptive
resistance mechanism. Genes undergoing significant reductions
in gene expression variability upon adaptation suggest that a
specific, small range of expression levels is selected for even in
divergent-adapted populations under different stress conditions.
One of the most variable genes in the wild-type samples was
dinB, for which variability significantly decreased in adapted
cultures (P = 0.07). Similarly, for tolC and recA, the adapted
populations displayed tighter expression than the unadapted
populations (P = 0.02 and 0.08, respectively). In contrast, soxS
expression variability was significantly higher across adapted
populations than across wild-type and hexane-treated strains (P
= 0.01), signifying that a high range of expression levels is
tolerable for adaptation.
Clustering also allowed identification of groups of genes

exhibiting similar trends in variability. For example, lexA and
marA were grouped separately from the bulk of the genes and
were relatively more variable in n-hexane-, tetracycline-, and
ampicillin-adapted samples. Another noteworthy grouping
contained tolC, rob, recA, rpoS, and polB, which were generally
expressed with lower interpopulation variability. Previous
studies have observed that several of these low-variability
genes play a direct role in survival to diverse antibiotics, for
instance, tolC in the presence of ciprofloxacin, sulfamethox-
azole, metronidazole, and ampicillin58 and recA in the presence
of ciprofloxacin, sulfamethoxazole, metronidazole norfloxacin,
ampicillin, and kanamycin.35,58 Additionally, in E. coli,
Pseudomonas aeruginosa, and Vibrio cholera, inhibition of rpoS

Figure 4. Gene expression variability is an indicator of adaptation.
Normalized expression of 14 stress-response genes is shown for n-
butanol-adapted populations (A) and populations grown with n-
hexane (B). Normalized gene expression was calculated as described in
the Methods. The horizontal line at 1 marks expression equal to wild-
type. Significant differential expression is denoted with ∗ for P < 0.05
and # for P < 0.10. (C) Heatmap values indicate the interpopulation
range of gene expression (−ΔCq,avg) from each of the five growth
conditions (shown on vertical axis): wild-type (W), adapted to
ampicillin (A), tetracycline (T), or n-butanol (B), or grown with n-
hexane (H). Hierarchical clustering is based on Euclidean distance.
Significantly different expression variability between unadapted and
adapted populations is indicated with ∗ for P < 0.05 and # for P < 0.10.

ACS Infectious Diseases Article

DOI: 10.1021/acsinfecdis.5b00095
ACS Infect. Dis. 2015, 1, 555−567

560

http://pubs.acs.org/doi/suppl/10.1021/acsinfecdis.5b00095/suppl_file/id5b00095_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsinfecdis.5b00095/suppl_file/id5b00095_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsinfecdis.5b00095/suppl_file/id5b00095_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsinfecdis.5b00095/suppl_file/id5b00095_si_001.pdf
http://dx.doi.org/10.1021/acsinfecdis.5b00095


was shown to decrease the frequency of resistant colonies upon
exposure to ampicillin.24 Finally, identifying differences
between the adapted populations from each condition may
provide insight into stress-specific mechanisms of adaptive
resistance. When we compare the tetracycline- and ampicillin-
adapted populations, marA expression was relatively more
variable across tetracycline-adapting strains than ampicillin-
adapting strains, while lexA, polB, and mutS were more variable
across ampicillin cultures.
Gene Expression Variability Impacts Adaptation

Ability. To further scrutinize the relationship between
expression variability and adaptation, we applied the synthetic
CRISPRi system27 to manipulate expression of seven genes:
marA, acrA, tolC, dinB, soxS, recA, and mutS. CRISPRi blocks
transcription via interference from the deactivated RNA-guided
DNA endonuclease, dCas9, which binds to DNA in a region
specified by the 20 nt sequence of a single-guide RNA (sgRNA)
(Tables S1 and S4 and Figure S5). The sgRNA sequences were
designed to guide dCas9 to an NGG PAM sequence in the
open reading frame for each target gene. Plasmids expressing
the sgRNA and dCas9 protein were co-transformed into E. coli
MG1655. A sgRNA plasmid-targeting red fluorescent protein
(RFP), which is not present in E. coli MG1655, was also
transformed as a control strain. The CRISPRi strains were
grown in media without or with 1 μg/mL of tetracycline for a
period of 3 days to evaluate the impact of gene perturbation on
adaptation.
To quantify adaptation ability, we calculated an adaptation

factor (αm,c), which describes the average change in growth rate
upon gene perturbation relative to the control (rm,c) and relative
to the initial growth rate (on day 1) upon gene perturbation
(sm,c) (eqs 1−3). The subscripts “m” and “c” denote the
CRISPRi strain and adaptation condition (either tetracycline or
no toxin), respectively. rm,c was calculated as the sum of relative
change between the growth rate of the specific CRISPRi strain
(μm) and control strain (μw) under the same selection
condition as on days 2 and 3 of the adaptation experiment
(eq 2). sm,c was calculated as the relative change between the
growth rate of the CRISPRi strain on days 2 and 3 with respect
to day 1 (eq 3). Positive α indicates that the CRISPRi strain
adapted well; a negative α indicated that the strain adapted
poorly, and α close to zero indicates that adaptation was not
impacted (Figure S6). The magnitude of the adaptation factor
(|α|) is thus used as a gauge of the absolute impact of a gene
perturbation on adaptation, as the perturbation could impact
adaptation either positively or negatively.
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We compared the |α| for the CRISPRi strains to the
interpopulation range of gene expression from adapted
populations by calculating linear fits and Pearson correlation
coefficients. Using an F-test, we show that the fits for

unadapted and adapted conditions are statistically different
(Figure 5A). When the strains are not under stress (unadapted

condition), α values are all close to zero, indicating that mutant
strains do not have inherently compromised fitness (Figure
5B). We also find no definite correlation between |α| and gene
expression variability in the unadapted condition (Figure 5B,
Pearson’s r = −0.16 with P = 0.73). Contrastingly, CRISPRi
strains adapted to tetracycline demonstrated a negative
correlation (Figure 5C, Pearson’s r = −0.53 with P = 0.23),
which hints that genes with low expression variability during
adaptation to tetracycline have greater impact on adaptation to
tetracycline selection pressure. To further scrutinize the
relationship between adaptation and gene expression variability,
we extended the analysis to establish whether similar
correlations were present in related E. coli strains.
Mutant single-gene knockout strains derived from E. coli

BW2511328 strains were grown in minimal medium with (4
μg/mL of ampicillin or 2 μg/mL of tetracycline) or without
antibiotics to evaluate the improvement in growth rate for four
replicate populations over 3 days of propagation. We calculated
α for the mutant strains using eqs 1−3, with E. coli BW25113 as
the control strain. Similar to the CRISPRi strains, the linear fits
for unadapted and adapted strains were significantly different
(Figure 5A). Again, when strains are grown without stress, α
values are close to zero, and there is no clear relationship
between adaptation and gene expression variability (Figure 5D,
Pearson’s r = 0.11 with P = 0.72). Notably, the magnitude of
the adaptation factor and amount of gene expression variability
are significantly negatively correlated for adapted knockout
strains (Figure 5E, Pearson’s r = −0.42 with P = 0.03), once

Figure 5. Genes with low expression variability have a greater impact
on adaptation. (A) Parameters from linear fits shown as dashed lines in
B−E, including slope with standard error, Pearson’s r, and the
probability value from an F-test comparing the unadapted and adapted
fits. (B−E) Comparison of gene expression variability (interpopulation
range in −ΔCq,avg) to the magnitude of the adaptation factor (|α|) of
corresponding CRISPRi (B,C) or single-gene knockout (D,E) strains.
Y-error bars are the SD of n = 3 (CRISPRi) or n = 4 (knockout)
biological replicates grown either without (B,D) or with (C,E)
antibiotic selection pressure. Square and triangle symbols denote
selection pressure of tetracycline and ampicillin, respectively. Each
point represents one gene/strain pair.
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more, indicating that genes with a smaller range of expression
have a greater impact on adaptive capability. The significance of
negative correlation holds even if either of the points at the
extreme end of the distribution is removed: ΔmarA in
tetracycline (r = −0.42 with P = 0.04) or ΔrecA in tetracycline
(r = −0.40 with P = 0.05). Moreover, we observe that the
replicate populations with genes lower in expression variability
knocked out tended to demonstrate greater heterogeneity in
growth, resulting in greater variability (SD) in |α| (Figure 5E).
This is consistent with our observation that greater
heterogeneity in growth is observed during adaptation (Figure
2). Indeed, gene expression variability was also found to be
significantly negatively correlated with the interpopulation
variability (SD) in |α| for adapted knockout strains (Pearson’s r
= −0.46, P = 0.02) but not in unadapted strains (Pearson’s r =
−0.16, P = 0.60).
Summary and Conclusions. In the face of pervasive

heterogeneity, it is challenging to discern key genes that enable
the progression of adaptive resistance. In this report, we
describe the magnitude of intra- and interpopulation
heterogeneity at multiple levels, including MIC, growth rate,
lag time, gene expression, and gene sequence. Our findings
support previous observations that resistance has both
genetic19,25,54 and nongenetic2,14,55 components, further
obfuscating general signatures of adaptive resistance. Here, we
sought to ascertain whether distinguishing gene expression
patterns would emerge from the heterogeneous adapted
populations and found that stress-response genes demonstrated
varying degrees of interpopulation gene expression variability.
The degree of heterogeneity is highlighted by the lack of
synergy between expression of upstream regulators and
downstream target gene expression. For instance, the tran-
scription factor MarA promotes transcription of acrA and tolC,
but we observed that in some adapted populations (e.g.,
ampicillin population 3, tetracycline populations 2 and 3) marA
and either acrA or tolC mRNA registered opposite changes in
expression. The lack of a clear relationship in expression levels
can possibly be attributed to redundancy in these networks, as
tolC is also regulated by SoxS, Rob, and RpoS in addition to
MarA and other factors not assessed in this study.59,60

The multiple intersections of regulation in stress-response
networks render their corresponding gene expression patterns
difficult to interpret. However, while high expression variability
was observed for some genes, several genes were expressed at a
consistent level across adapted populations. Furthermore,
clustering based on interpopulation gene expression variability
enabled us to separate adapted populations from unadapted
populations, indicating that the degree of variability has
biological relevance. Others have shown a correlation between
the number of mutations in a coding region and the magnitude
of gene expression changes,61 but here we found that mutations
were not predictive of interpopulation gene expression
variability, which suggests that both genetic and nongenetic
changes underlie the progression of resistance. The implication
of interpopulation gene expression variability on adaptive
resistance was further analyzed by adapting CRISPRi strains
and single-gene knockout mutants to antibiotics. Significantly
different trends were found to relate adaptation and gene
expression variability in adapted versus unadapted populations.
Especially, in single-gene knockout mutants, we noted a
negative correlation, whereby knocking out stress-response
genes with low interpopulation variability in expression (e.g.,
tolC, recA, dinB) was more likely to impact adaptation (either

positively or negatively), while knocking out genes with high
interpopulation variability in expression (e.g., marA, soxS, and
cyoA) had less impact on adaptation.
The value of using gene expression variability to identify key

players in adaptive resistance is evident when attempting to
specifically attribute a transcriptional response to any one
regulatory hub. For instance, rpoS, the sigma factor responsible
for activating the general stress response, had consistently
decreased expression in all ampicillin-, tetracycline-, and n-
butanol-adapted populations (Figure 3A,B and Figure 4A).
Others have shown that knocking out rpoS increases
persistence,62 which can promote temporary tolerance gains.
Hence, it appears that reduced expression of rpoS is part of a
natural adaptive response. As adapting strains are growing at
the same time scale as wild-type and executing increases in
MIC, in this instance, persistence is not the mechanism of
survival. dinB, encoding DNA polymerase IV, is activated by
rpoS,52 so conceivably, decreases in rpoS RNA could lead to
decreases in dinB, though this was not evident in the gene
expression data (Figure 3A,B and Figure 4A). Likewise, rpoS
represses mutS,63 but increased mutS expression was also not
readily observed in the adapted populations. Finally, tolC, which
is induced by RpoS,60 did show more than 2-fold decrease in
expression in 8 out of 9 adapted populations, consistent with
lower rpoS expression levels. Three day propagation of mutant
strains revealed that both rpoS and tolC impact adaptation to
antibiotics (Figure 5). ΔrpoS strains propagated in ampicillin
had compromised adaptation (average α = −0.30, Figure S6),
while the same strain in tetracycline showed increased
adaptation capabilities (α = 0.27). ΔtolC strains had limited
adaptation in ampicillin (α = −0.70) and tetracycline (α =
−0.39), while CRISPRi−tolC strains in tetracycline had
increased adaptation ability (α = 0.69). Therefore, it seems
that slight reductions in tolC expression, mediated by rpoS or
enacted synthetically by CRISPRi, are advantageous for
adaptation to ampicillin and tetracycline, while complete
knockout of tolC hinders adaptation. While future studies are
needed to explain the advantage of decreased tolC expression,
or why knocking out rpoS has variable impact on adaptation to
different antibiotics, here we demonstrate that these genes can
be identified as targets of interest purely by measuring their
gene expression variability. Gene expression variability in both
rpoS and tolC was low across adapted populations (Figure 4C),
which we propose can be used as an indicator that these genes
are important for adaptation.
We postulate that a range of mRNA levels is selected for

during adaptation, and as such, the observed expression
variability provides a measure of a gene’s participation in
adaptive resistance. Genes with low and high variability in
expression likely play different roles in long-term population
survival. For instance, an analysis of yeast transcriptome data
noted that genes serving as network hubs are more likely to
exhibit low expression variability than genes with fewer
interactions.64 Similarly, our results suggest that genes with
low expression variability directly promote resistance to a
certain toxin, as manipulating these genes was more likely to
impact adaptation. Supporting this claim, reductions in gene
expression variability from negative feedback control have been
previously observed in a number of biological systems,
including in E. coli chemotaxis65 and in synthetic circuits in
yeast.66 Additionally, differentiation in mammalian and plant
cells has been linked to fine-tuning of expression by
microRNAs.67,68 In the adapted populations studied here, the
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genes exhibiting high expression variability do not appear to be
directly providing resistance to antibiotics, as repressing or
knocking out these genes generally had less impact on
adaptation. However, these genes may contribute to population
survival by allowing cells to sample distinct physiological states
and prepare for changing environmental conditions. Higher
gene expression variability may provide an advantage in that
cells can explore different adaptation strategies when stressed
without the need for mutations. For example, variation in
bistable or multistable feedback structures can promote bet-
hedging by generating heterogeneous subpopulations12,55 or
can enable cells to cycle through multiple expression states.69,70

Especially considering that we observe intrapopulation
heterogeneity in MIC and growth, we acknowledge that
individual cells within each population may have obtained
different solutions. Single-cell gene expression studies will
provide further insight into intrapopulation distributions of
stress-response gene expression and enable correlations
between interpopulation and intrapopulation gene expression
variability.
Biological relevance of differential gene expression variability

has been proposed by others. Studies in complex organisms
including Homo sapiens report similar variability or “dynamism”
at the tissue level that contributes to various disease states.71,72

Recently, differential gene expression variability was observed
during adaptive resistance to antisense therapeutics.73 In this
report, differential gene expression variability may indicate the
presence of a regulatory structure that is active during adaptive
resistance, though each gene’s range of expression could be
altered by a multitude of phenomena, including pulsatile
dynamics,70 multistability,74,75 or divergent adaptation at the
genomic level.19,76 Thus, gene expression variability is a
powerful metric to signify the occurrence of adaptive resistance,
as it provides valuable information without the need to
deconvolute intersecting stress-response network regulation,
pinpoint specific mutations, or eradicate pervasive phenotypic
divergence. Additional examination of the range of gene
expression within and across adapted populations will help to
illuminate the basis and rationale for differential variability in
stress-response and other networks.

■ METHODS
Bacterial Strains, Media, and Culture Conditions. E.

coli K-12 strain MG1655 (ATCC 700926) was used as the wild-
type in adaptation experiments and the host strain for
harboring CRISPRi27 synthetic constructs. Keio collection
mutants and parent strain (E. coli BW25113, the wild-type for
knockout mutant studies) were purchased from Yale’s Coli
Genetic Stock Center (http://cgsc.biology.yale.edu/index.
php). All strains and plasmids used are listed in Table S1. All
adaptation cultures were grown in M9 minimal media with
0.4% glucose and toxin (ampicillin, tetracycline, n-butanol, or n-
hexane) as indicated. Keio collection mutants were also grown
in M9 minimal media (consisting of 5X M9 minimal media
salts solution from MP Biomedicals, 2.0 mM MgSO4, and 0.1
mM CaCl2 in sterile water) with 0.4% glucose. Cells harboring
CRISPRi constructs were grown in LB media (Sigma-Aldrich)
supplemented with ampicillin (100 μg/mL) and chloramphe-
nicol (25 μg/mL) to maintain plasmid selection. Construct
expression was induced via supplementation with anhydrous
tetracycline (aTc) (10 ng/mL). Colonies of MG1655 wild-type
strain were grown on LB agar plates. Colonies of Keio mutants
were grown on LB agar plates supplemented with kanamycin

(50 μg/mL). Colonies harboring CRISPRi constructs were
grown on LB agar plates supplemented with ampicillin (100
μg/mL) and chloramphenicol (25 μg/mL).

Adaptation of E. coli MG1655 Strains, Culture
Conditions, and Sample Collection. Wild-type and n-
hexane samples were obtained by growing E. coli MG1655 to
0.5 ≤ OD600 ≤ 1.0 in M9 minimal media with 0.4% glucose
(and with 10% v/v hexane for n-hexane samples). OD600 was
obtained on a Nanodrop 2000 (Thermo Scientific) using 2 μL
of culture. Initially, 5 mL of overnight cultures was inoculated
from three individual colonies of the wild-type MG1655 strain
grown at 37 °C with 225 rpm shaking in M9 minimal media
with 0.4% glucose (day −1). Portions of the triplicate wild-type
cultures grown to exponential phase in minimal media were
stored for transcriptome analysis (day 0). We defined MIC as
2x the concentration of toxin that allows culture density of
OD600 > 0.5 after 24 h of growth. The initial MIC of E. coli
MG1655 was determined by splitting the day 0 wild-type
MG1655 cultures in minimal media with a range of toxin
concentrations (Table S2). The culture growing to OD600 > 0.5
at the highest concentration of toxin after overnight growth was
selected for continued evolution. This culture was repeatedly
diluted 1:5 to 1:100 (depending on culture density) to OD600 ∼
0.1 in fresh media every 1−3 days into new cultures containing
the toxin at the current and higher concentrations. Between
splits and at least every 24 h, medium was refreshed by either
diluting the culture 1:5−1:100 in new media (if OD600 ≥ 0.5)
or spinning down cells and resuspending in new media (if
OD600 < 0.5) to maintain toxin pressure and nutrient supply.
Evolution was continued for at least 11 days until bacterial
populations were able to grow at four times the initial MIC or
until the populations exhibited no improvement in tolerance for
seven continuous days. Samples for qPCR were collected on
the final day of adaptation when culture at the highest toxin
concentration was in exponential phase, 0.5 ≤ OD600 ≤ 1.0. To
store samples for RNA extraction, 0.5 mL of culture was added
to 1 mL of RNAprotect bacterial reagent (Qiagen), incubated
at room temperature for 5 min, and centrifuged at 4000 rpm for
10 min. Pellets were flash frozen in ethanol and dry ice and
stored at −80 °C until RNA extraction. Freezer stocks were
prepared by centrifuging 0.5 mL of culture for 5 min at 4000
rpm and then suspending in LB + 50% glycerol. Three
independent biological replicates were adapted to each toxin.
Adaptation exposure conditions for each population are
included in Table S2.

Adapted Population Growth and MIC. Adapted and
wild-type populations were inoculated from glycerol stocks into
M9 minimal media, grown to OD600 = 1, diluted 1:10000 in
sterile water, and 10 μL was plated onto LB agar. After 16 h of
growth at 37 °C, 36 colonies were picked and suspended in 20
μL of sterile water. For growth curves, 1 μL of each colony
suspension was used to inoculate 50 μL cultures in a 384-well
plate. Each colony from the wild-type and ampicillin-adapted
populations was grown in media with no toxin, 50, or 100 μg/
mL of ampicillin. Colonies from wild-type and tetracycline-
adapted populations were grown in media with no toxin, 1, or 2
μg/mL of tetracycline. For MIC assessment of individual
colonies, 1 μL of each colony suspension was spotted onto LB
agar plates across a range of concentrations of toxin (0, 6.25,
12.5, 25, 50, 100, 200 μg/mL of ampicillin and 0, 0.25, 0.5,1, 2,
4, 8, 16, 32 μg/mL of tetracycline). The MIC was estimated as
the lowest concentration of antibiotic at which no growth was
observed on solid media after 24 h at 37 °C. All growth curves
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in this study were obtained with a Tecan GENios plate reader
(Tecan Group Ltd.) with Magellan software version 7.2.
Absorbance was read at 562 nm and 37 °C every 20 min, with
shaking between measurements. Growth curve parameters were
calculated using the program GrowthRates.77

Sequencing of Stress-Response Genes. Three colonies
from each adapted population and two from the wild-type
population were picked from LB agar plates. Colony PCR was
performed using Phusion high-fidelity DNA polymerase (New
England Biolabs) to amplify a continuous region for
sequencing, which included all annotated promoter regions
and upstream transcription factor binding sites, the open
reading frame, and at least 80 nt downstream of the open
reading frame. PCR primers are included in Table S3. Bands
were cut and purified with a Zymoclean gel DNA recovery kit
(Zymo Research). Concentration was verified with a Nanodrop
2000. Sequencing primers 19−20 nt in length were designed to
bind at least every 700 bp along the region of interest (Table
S3). Primers were 45% GC content with a melting temperature
of 50−60 °C with G or C at the 3′ end. Sequencing was
performed by Quintarabio. SnapGene software version 2.7.2
(GSL Biotech LLC) was used for alignment. Sequences were
aligned to the wild-type sequences as well as the E. coli K12
MG1655 NCBI reference genome NC_000913.3. No muta-
tions were noted in wild-type sequences.
CRISPRi Design and Plasmid Assembly. Single-guide

RNA (sgRNA) plasmids (PBO.002-PBO.008) were derived
from the RFP-targeting control plasmid pgRNA (Addgene
plasmid 44251). Primers were designed to replace the 44251
plasmid’s RFP-targeting sgRNA using a common reverse
primer flanked with an ApaI restriction site and unique forward
primers flanked with a SpeI restriction site (Table S4). PCR
with Phusion high-fidelity DNA polymerase (New England
Biolabs) was used to amplify these new target sgRNA insert
DNA fragments, which were subsequently gel-purified
(Zymoclean gel DNA recovery kit, Zymo Research), digested
with ApaI and SpeI (FastDigest enzymes, Thermo Scientific),
and PCR-purified (GeneJET PCR purification kit, Thermo
Scientific). The 44251 plasmid backbone was also digested with
ApaI and SpeI and gel-purified, and T4 DNA ligase (Thermo
Scientific) was used to ligate the new sgRNA target inserts into
the 44251 backbone. Ligations were transformed into chemi-
cally competent E. coli MG1655 cells harboring dCas9
(Addgene plasmid 44249). Plasmid minipreps were performed
using Zyppy plasmid miniprep kit (Zymo Research).
Sequencing of final sgRNA constructs was performed for
validation of correct assembly (GENEWIZ). Repression was
verified with qPCR (Figure S5).
Adaptation of E. coli MG1655 Harboring CRISPRi

Constructs. Three individual colonies were picked from
selective plates (LB agar + ampicillin + chloramphenicol).
Colonies were used to inoculate 100 μL of LB cultures
supplemented with ampicillin, chloramphenicol, and aTc and
grown to stationary phase. From each of these cultures, 2 μL
was used to inoculate two 50 μL LB cultures supplemented
with ampicillin, chloramphenicol, and aTc (and one supple-
mented with 1 μg/mL of tetracycline) in a 384-well microplate.
After 24 h of growth, 2 μL of these cultures was diluted into
fresh media. This process was repeated for a total of 3 days of
growth.
Adaptation of E. coli BW25113- and BW25113-

Derived Single-Gene Knockout Mutants. Four individual
colonies from each strain were picked from selective plates (LB

agar + kanamycin). Colonies were suspended in 50 μL of M9
minimal media with 0.4% glucose, out of which 1 μL of each
colony suspension was used to inoculate 20 μL cultures (in
media only or media with 4 μg/mL of ampicillin or 2 μg/mL of
tetracycline) in a 384-well microplate. Concentration of
antibiotic was selected based on the MIC of 1 mL of E. coli
BW25113 cultures in M9 minimal media. After 24 h of growth,
cultures were diluted (1:40 to 1:10, depending on the
absorbance recorded) into fresh media with antibiotic as
indicated. Cultures were diluted twice for a total of 3 days of
growth.

RNA Extraction and Purification. For transcript ex-
pression from adapted populations, cell pellets from the
samples at the end of each adaptation period were resuspended
in TE buffer supplemented with lysozyme and proteinase K.
For CRISPRi verification, overnight cultures of cells harboring
CRISPR inhibition constructs grown in M9 minimal media
supplemented with 0.4% glucose, ampicillin, and chloramphe-
nicol were inoculated with 10 ng/μL of aTc for 3 h, pelleted,
and resuspended in TE buffer supplemented with lysozyme and
proteinase K. RNA was extracted from all samples using the
GeneJET RNA purification kit (Thermo Scientific). DNA
contamination was removed with the TURBO DNA-free kit
(Ambion). RNA concentrations and A260/A280 ratios were
obtained with a Nanodrop 2000 (Thermo Scientific). Extracted
and purified RNA was stored at −80 °C in nuclease-free water.

RT-qPCR. The DyNAmo SYBR Green two-step RT-qPCR
kit (Thermo Scientific) was used to synthesize cDNA and to
prepare RT-qPCR reactions. In 10 μL reactions, total RNA
(50−100 ng) was reverse-transcribed with 2 μL of M-MuLV
RNase H+ reverse transcriptase (RT) and 300 ng of random
hexamers in a Biorad T100 thermocycler. A no-RT control was
included with each set of cDNA reactions. RT was carried out
for 10 min at 25 °C, followed by 30 min at 37 °C, and 5 min at
85 °C. cDNA was diluted to 1 ng/μL with nuclease-free water
and stored at −20 °C. Each qPCR reaction contained 1−2 ng
of template cDNA, 0.5 μM forward and 0.5 μM reverse primer,
0.2 μL of 50x ROX dye, 5 μL of MasterMix containing SYBR
green and modified Tbr DNA polymerase, and nuclease-free
water to 10 μL total volume. Two technical replicates were
included for each sample cDNA/primer combination. The
qPCR cycling program was 15 min at 95 °C for polymerase
activation followed by 40 cycles of denaturing at 94 °C for 10 s,
annealing at 55 °C for 30 s, and extension at 72 °C for 30 s.
No-RT controls were included to verify that DNA contam-
ination was negligible. Melting curves were generated after
cycling was completed by holding for 15 s at 95 °C, 15 s at 55
°C, then ramping to 95 °C and holding for 15 s. Data shown in
this report were obtained on an Eco Illumina RT-qPCR,
located in the CU Core Sequencing Facility.

RT-qPCR Primer Design. Gene-specific RT-qPCR primers
were designed using Primer-BLAST.78 Sequences of open
reading frames were obtained from the E. coli K12 MG1655
NCBI reference genome NC_000913.3. Primers were selected
to be 20−22 nt in length with a less than 200 nt amplicon for
each primer pair (Table S5). Integrated DNA Technology and
Invitrogen supplied the primers, with standard desalting. Primer
specificity was verified by running no template controls and
melting curves, as well as gel electrophoresis of RT-qPCR
products. Primer amplification efficiency was found to be in the
range of 96 ± 10% by running standard curves with template
cDNA dilutions prepared from total RNA.
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Gene Expression and Gene Expression Variability
Analysis. Cq values were obtained from Eco Software version
4.1.2.0. The average of two technical replicates (per biological
replicate) was used to calculate all ΔCq values. Cycle numbers
differed by 0.3 for typical technical replicates. Due to the
divergent nature of the adaptation experiments, we calculated
fold change in gene expression with respect to four reference
genes: gyrA, hcaT, rrsA, and cysG (eq 4). Reference genes were
selected from literature.79−81 The average Cq for the four
reference genes together exhibited a lower standard deviation
than the average Cq across all genes, indicating that the
reference genes were generally more stable than an average
gene. The heatmap and dendrograms were generated using the
clustergram function with a Euclidean distance metric,
unweighted average linkage function, and optimal leaf order-
ing82 in MATLAB’s Bioinformatics Toolbox (The Mathworks,
Inc., Natick, MA). Normalized gene expression of mRNA
expression was calculated per the 2−ΔΔCq method,83 per eq 5.
For adapted populations, gene expression for each gene of
interest was normalized with respect to four reference genes
and three wild-type strains (m = 3) by taking the geometric
mean of the 2−ΔΔCq calculated for each gene of interest (goi),
reference gene (ref), and wild-type strain (wt) pairing,84 as
shown in eq 5, where m = 3. For verification of inhibition using
CRISPRi constructs, normalized gene expression was calculated
for individual biological triplicates as in eqs 4 and 5, using rrsA
as a reference gene (Figure S5). P values were obtained using
two-tailed, type two t tests.
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C C
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Linear Fitting. Slope and Pearson correlation coefficients
for gene expression variability (range in −ΔCq) versus |α| were
calculated using linear fits with no weighting (OriginPro
software, version 9.1.0).
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(2) Fernańdez, L., Breidenstein, E. B. M., and Hancock, R. E. W.
(2011) Creeping baselines and adaptive resistance to antibiotics. Drug
Resist. Updates 14 (1), 1−21.
(3) Braoudaki, M., and Hilton, A. C. (2004) Adaptive Resistance to
Biocides in Salmonella enterica and Escherichia coli O157 and Cross-
Resistance to Antimicrobial Agents. J. Clin. Microbiol. 42 (1), 73−78.
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